

Cambridge International AS & A Level

PHYSICS P2

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS

Chapter 2

Measurement techniques

2.1 Errors and uncertainties

 $11.\ 9702_m20_qp_22\ Q:\ 1$

(a)	I enath	mass	and	temi	oerature	are	all ST	base	quantitie	2.5
١	a,	Longui,	mass	and	CITI	ociatuic	aic	an Oi	Dasc	quantitio	, 0

State two other SI base quantities.

(b) The acceleration of free fall g may be determined from an oscillating pendulum using the equation

$$g = \frac{4\pi^2 l}{T^2}$$

where l is the length of the pendulum and T is the period of oscillation.

In an experiment, the measured values for an oscillating pendulum are

and
$$l = 1.50 \text{ m} \pm 2\%$$

 $T = 2.48 \text{ s} \pm 3\%$.

(i) Calculate the acceleration of free fall g.

$$g = \dots ms^{-2}$$
 [1]

(ii) Determine the percentage uncertainty in g.

(iii) Use your answers in (b)(i) and (b)(ii) to determine the absolute uncertainty of the calculated value of g.

[Total: 6]

 $12.\ 9702_s20_qp_21\ Q:\ 1$

(a)	Use an expression for work done	e, in terms of force	, to show that the SI	base units of energy
	are kg m ² s ⁻² .			

[2]

(b) (i) The energy E stored in an electrical component is given by

$$E = \frac{Q^2}{2C}$$

where Q is charge and C is a constant.

Use this equation and the information in (a) to determine the SI base units of C.

(ii)	Measurements of a constant current in a wire are taken using an analogue ammeter.
	For these measurements, describe one possible cause of:
	1. a random error
	2. a systematic error.
	[2]
	[Total: 6]

13. $9702_s19_qp_22$ Q: 1

(a)	The diameter a	d of a o	cylinder is	measured a	as 0.0125 m +	1.6%

Calculate the absolute uncertainty in this measurement.

(b) The cylinder in (a) stands on a horizontal surface. The pressure p exerted on the surface by the cylinder is given by

$$p = \frac{4W}{\pi d^2}.$$

The measured weight W of the cylinder is 0.38 N \pm 2.8%.

(i) Calculate the pressure p.

(ii) Determine the absolute uncertainty in the value of p.

[Total: 4]

 $14.\ 9702_w19_qp_21\ Q:\ 1$

- (a) Make estimates of:
 - (i) the mass, in g, of a new pencil

(ii) the wavelength of ultraviolet radiation.

(b) The period *T* of the oscillations of a mass *m* suspended from a spring is given by

$$T = 2\pi \sqrt{\frac{m}{k}}$$

where k is the spring constant of the spring.

The manufacturer of a spring states that it has a spring constant of $25\,\mathrm{N\,m^{-1}} \pm 8\%$. A mass of $200\times10^{-3}\,\mathrm{kg} \pm 4\times10^{-3}\,\mathrm{kg}$ is suspended from the end of the spring and then made to oscillate.

(i) Calculate the period T of the oscillations.

(ii) Determine the value of *T*, with its absolute uncertainty, to an appropriate number of significant figures.

[Total: 6]

15. 9702_s18_qp_23 Q: 1

(a)		analogue voltmeter is used to take measurements of a constant potential difference across sistor.
	For	these measurements, describe one example of
	(i)	a systematic error,
		[1]
	(ii)	a random error.
		ra1
(b)		potential difference across a resistor is measured as $5.0\text{V} \pm 0.1\text{V}$. The resistor is labelled naving a resistance of $125\Omega \pm 3\%$.
	(i)	Calculate the power dissipated by the resistor.
		power = W [2]
	(ii)	Calculate the percentage uncertainty in the calculated power.
		normante que un cortaint y
		percentage uncertainty = % [2]
	(iii)	Determine the value of the power, with its absolute uncertainty, to an appropriate number of significant figures.
		power = ± W [2]
		[Total: 8]

16. 9702_s17_qp_21 Q: 1

(a) Determine the SI base units of stress. Show your working.

base i	units	[2]	

(b) A beam PQ is clamped so that the beam is horizontal. A mass *M* of 500 g is hung from end Q and the beam bends slightly, as illustrated in Fig. 1.1.

Fig. 1.1

The length l of the beam from the edge of the clamp R to end Q is 60.0 cm. The width b of the beam is 30.0 mm and the thickness d of the beam is 5.00 mm. The material of the beam has Young modulus E.

The mass M is made to oscillate vertically. The time period T of the oscillations is 0.58 s.

The period T is given by the expression

$$T = 2\pi \sqrt{\frac{4Ml^3}{Ebd^3}}.$$

(i) Determine E in GPa.

(II) In	ie quantities used to determine E should be measured with accuracy and with precision
1.	Explain the difference between accuracy and precision.
	accuracy:
	precision:
	[2
2.	In a particular experiment, the quantities l and T are measured with the same percentage uncertainty. State and explain which of these two quantities contributes more to the uncertainty in the value of E .
	[1
	[Total: 8
9702_s1	7_qp_22 Q: 1
(a) Sta	ite two SI base units other than kilogram, metre and second.
1	6.0
2	
	[1
(b) Det	termine the SI base units of resistivity.
	hase units

(c) (i) A wire of cross-sectional area $1.5\,\text{mm}^2$ and length $2.5\,\text{m}$ has a resistance of $0.030\,\Omega$. Calculate the resistivity of the material of the wire in $n\Omega\,\text{m}$.

		resistivity =n Ω m [3]
(ii)	1.	State what is meant by <i>precision</i> .
		40
	2.	Explain why the precision in the value of the resistivity is improved by using a micrometer screw gauge rather than a metre rule to measure the diameter of the wire.
		[2]
		[Total: 9]

18.
$$9702 w17 qp_2$$
 Q: 1

One end of a wire is connected to a fixed point. A load is attached to the other end so that the wire hangs vertically.

The diameter d of the wire and the load F are measured as

$$d = 0.40 \pm 0.02 \,\text{mm},$$

 $F = 25.0 \pm 0.5 \,\text{N}.$

- (a) For the measurement of the diameter of the wire, state
 - (i) the name of a suitable measuring instrument,

[4	1
 	П

(ii) how random errors may be reduced when using the instrument in (i).

(b) The stress σ in the wire is calculated by using the expression

$$\sigma = \frac{4F}{\pi d^2}$$

(i) Show that the value of σ is 1.99 × 10⁸ N m⁻²

(ii) Determine the percentage uncertainty in σ .

(iii) Use the information in **(b)(i)** and your answer in **(b)(ii)** to determine the value of σ , with its absolute uncertainty, to an appropriate number of significant figures.

σ=	±	 N m ⁻² [2]
		[Total: 8]

19. $9702 _{m16} _{qp} _{22}$ Q: 1

The speed *v* of a transverse wave on a uniform string is given by the expression

$$v = \sqrt{\frac{Tl}{m}}$$

where T is the tension in the string, l is its length and m is its mass.

An experiment is performed to determine the speed v of the wave. The measurements are shown in Fig. 1.1.

quantity	measurement	uncertainty
Т	1.8N	± 5%
1	126cm	± 1%
m	5.1g	± 2%

Fig. 1.1

(a) State an appropriate instrument to measure the length *l*.

.....[1]

(b) (i) Use the data in Fig. 1.1 to calculate the speed ν .

 $v = \dots m s^{-1}$ [2]

(ii) Use your answer in (b)(i) and the data in Fig. 1.1 to determine the value of v, with its absolute uncertainty, to an appropriate number of significant figures.

$$v = \dots + m s^{-1}$$
 [3]

[Total: 6]

 $20.\ 9702_s16_qp_21\ Q:\ 1$

- (a) Make estimates of
 - (i) the mass, in kg, of a wooden metre rule,

(ii) the volume, in cm³, of a cricket ball or a tennis ball.

(b) A metal wire of length L has a circular cross-section of diameter d, as shown in Fig. 1.1.

Fig. 1.1

The volume V of the wire is given by the expression

$$V = \frac{\pi d^2 L}{4}$$

The diameter, length and mass M are measured to determine the density of the metal of the wire. The measured values are:

$$d = 0.38 \pm 0.01 \text{ mm},$$

 $L = 25.0 \pm 0.1 \text{ cm},$
 $M = 0.225 \pm 0.001 \text{ g}.$

Calculate the density of the metal, with its absolute uncertainty. Give your answer to an appropriate number of significant figures.

density =
$$\pm$$
 kg m⁻³ [5]

[Total: 7]

 $21.\ 9702_s16_qp_23\ Q\hbox{:}\ 2$

(a)	Describe the effects, one in each case, of systematic errors and random errors when using a micrometer screw gauge to take readings for the diameter of a wire.
	systematic errors:
	random errors:
	[2]
(b)	Distinguish between precision and accuracy when measuring the diameter of a wire.
	precision:
	accuracy:
	[2]
	[Total: 4]
	·** A Palpa Calmir

 $22.\ 9702_s15_qp_23\ Q:\ 4$

Fig. 4.1 shows the values obtained in an experiment to determine the Young modulus *E* of a metal in the form of a wire.

quantity	value	instrument
diameter d	0.48 mm	
length 1	1.768 m	
load F	5.0 N to 30.0 N in 5.0 N steps	
extension e	0.25 mm to 1.50 mm	

Į						
			Fi	ig. 4.1	0	
(a)	(i)	Complete the quar	te Fig. 4.1 with the name of ntities.	an instrument that cou	ıld be used to measure ea	ch of [3]
	(ii)	Explain	why a series of values of F,	, each with correspond	ing extension <i>e</i> , are meas	ured.
						[1]
(b)	b) Explain how a series of readings of the quantities given in Fig. 4.1 is used to determine the Young modulus of the metal. A numerical answer for <i>E</i> is not required.					
			200	0		
			100			
		.**				[2]
		**				[—]

23. $9702_{\text{w}15}_{\text{qp}}_{\text{2}1}$ Q: 1

(a)	State two SI	base	guantities	other than	mass.	lenath	and time

1.	
2.	
	[2]

(b) A beam is clamped at one end and an object X is attached to the other end of the beam, as shown in Fig. 1.1.

Fig. 1.1

The object X is made to oscillate vertically.

The time period T of the oscillations is given by

$$T=K\sqrt{\frac{Ml^3}{E}}$$

where M is the mass of X,

l is the length between the clamp and X,

E is the Young modulus of the material of the beam

and K is a constant.

(i) 1. Show that the SI base units of the Young modulus are $kg m^{-1} s^{-2}$.

2. Determine the SI base units of K.

SI base units of <i>K</i>	[2]
---------------------------	-----

(ii) Data in SI units for the oscillations of X are shown in Fig. 1.2.

quantity	value	uncertainty
Т	0.45	± 2.0%
1	0.892	± 0.2%
М	0.2068	± 0.1%
К	1.48 × 10 ⁵	± 1.5%

Fig. 1.2

Calculate E and its actual uncertainty.

$$E = \dots \pm \text{kg m}^{-1} \text{ s}^{-2} [4]$$

